A Regio- and Stereoselective ω-Transaminase/Monoamine Oxidase Cascade for the Synthesis of Chiral 2,5-Disubstituted Pyrrolidines**

نویسندگان

  • Elaine O'Reilly
  • Cesar Iglesias
  • Diego Ghislieri
  • Jennifer Hopwood
  • James L Galman
  • Richard C Lloyd
  • Nicholas J Turner
چکیده

Biocatalytic approaches to the synthesis of optically pure chiral amines, starting from simple achiral building blocks, are highly desirable because such motifs are present in a wide variety of important natural products and pharmaceutical compounds. Herein, a novel one-pot ω-transaminase (TA)/monoamine oxidase (MAO-N) cascade process for the synthesis of chiral 2,5-disubstituted pyrrolidines is reported. The reactions proceeded with excellent enantio- and diastereoselectivity (>94 % ee; >98 % de) and can be performed on a preparative scale. This methodology exploits the complementary regio- and stereoselectivity displayed by both enzymes, which ensures that the stereogenic center established by the transaminase is not affected by the monoamine oxidase, and highlights the potential of this multienzyme cascade for the efficient synthesis of chiral building blocks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stereoselective synthesis of cis-2,5-disubstituted pyrrolidines via Wacker-type aerobic oxidative cyclization of alkenes with tert-butanesulfinamide nucleophiles.

Palladium(II)-catalyzed aerobic oxidative cyclization of alkenes with tethered tert-butanesulfinamides furnishes enantiopure 2,5-disubstituted pyrrolidines, originating from readily available and easily diversified starting materials. These reactions are the first reported examples of metal-catalyzed addition of sulfinamide nucleophiles to alkenes.

متن کامل

Chiral Induction in Cycloaddition Reactions of Azomethine Ylides to Synthesis of New Enantiomerically Pure Spiro Oxindolopyrrolizidines

An efficient one-pot three-component procedure for the synthesis of new chiral spiro-oxindolopyrrolizidines with highly regio-, diastereo-, and enantioselective from 1,3-dipolar cycloaddition of azomethine ylides and optically pure active cinamoyl oxazolidinone are described. The process occurs at room temperature in aqueous ethanol as green solvent and in the absence of any bidentate chelating...

متن کامل

A Three-Component 1,3-Dipolar Cycloaddition Reaction of Azomethine Ylide for Synthesis of New Bis-spiro-oxindolo(pyrrolizidines/pyrrolidines) Derivatives

The development of multicomponent reactions (MCRs) designed to produce elaborate biologically active compounds has become an important area of research in organic, combinatorial, and medicinal chemistry. A comparative study of the synthesis of new bis-spiro-oxindolo(pyrrolizidines/pyrrolidines) ring systems by the cycloaddition of azomethine ylides generated by a decarboxylative route from sarc...

متن کامل

Chiral Induction in Cycloaddition Reactions of Azomethine Ylides to Synthesis of New Enantiomerically Pure Spiro Oxindolopyrrolizidines

An efficient one-pot three-component procedure for the synthesis of new chiral spiro-oxindolopyrrolizidines with highly regio-, diastereo-, and enantioselective from 1,3-dipolar cycloaddition of azomethine ylides and optically pure active cinamoyl oxazolidinone are described. The process occurs at room temperature in aqueous ethanol as green solvent and in the absence of any bidentate chelating...

متن کامل

One-pot tandem cyclization of enantiopure asymmetric cis-2,5-disubstituted pyrrolidines: Facile access to chiral 10-heteroazatriquinanes

A series of chiral 10-heteroazatriquinanes were synthesized from enantiopure asymmetric cis-2,5-disubstituted pyrrolidines through a one-pot tandem cyclization procedure. The structures and configurations of these new chiral 10-heteroazatriquinanes are confirmed by X-ray single-crystal diffraction analysis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014